
 1

Lectures on WPF
Logical And Visual Trees

Copyright © by V. Miszalok, last update: 28-08-2008

 Layout
 The Visual Tree
 Preliminaries
 LogicalAndVisualTree1.xaml
 LogicalAndVisualTree1.cs
 The Snoop Utility

This lecture is based on the books of Nathan&Lehenbauer and MacDonald:

Layout
The WPF layout system arranges a window by placing elements into specialized layout containers such as
Button, StackPanel, DockPanel, Grid etc.
Even a simple window breaks down in a nested series of such containers.
And more than that: Each container breaks down in even smaller parts: background, foreground, border,
picture, strings, vector shapes etc. This filigree of nested contents is very flexible at the price of complexity.

The WPF layout process takes place at run time in two stages: a) measure stage and b) arrange stage.
a) loops through its child elements and asks them for their preferred sizes.
b) creates a compromise of the conflicting wishes, decides about the distribution of limited space and
 arranges the children at appropriate positions.

Graphical User Interfaces consist of nested controls.
Sample: A windows contains a StackPanel and the Stackpanel contains a Label and two Buttons and
each of them contains a String.
XAML is the ideal language to nest such elements and the logical structure of nesting is called
the Logical Tree.

The Visual Tree
The Visual Tree is an expanded version of the Logical Tree because it breaks down the nested elements
into smaller pieces.
It unveils that a simple control as Button is just the name of a black box which hides strange elements
such as ButtonChrome and ContentPresenter.
In most cases we use the black boxes as they are. We write logical trees in XAML and/or in C# and do not care
what’s going on inside the black boxes of our controls.
WPF doesn't force us to look deeper as long we use the standard Template of a control which per default
defines the inner wiring of our control.

The Control class defines its appearance by the Template property. If you want to change the appearance
of a control but retain its functionality, you should create a new ControlTemplate instead of creating a new
Control.
A Control that does not have a ControlTemplate is not visible, and setting the following properties has
no effect unless the ControlTemplate references them explicitly: Foreground, Background,
HorizontalContentAlignment, VerticalContentAlignment, BorderBrush,
BorderThickness, FontFamily, FontSize, FontStretch, FontWeight.

It's importand to realize that the finally resulting control depends on several things:
a) on its Template which defines its Visual Tree,
b) on Styles,
c) on properties and
d) on the operating system (Vista-buttons look different to XP-buttons and both change when you change your
current Window theme.)

The visual tree allows us to do two things:
a) to alter one of its elements by changing its Style.TargetType-property. It can be changed forever or at
run time by using triggers. Sample: A button can change its background or its border on mouse entering and
leaving.
b) to write new Templates that change the look and feel of our controls.

 2
Preliminaries
Guidance for Visual Studio 2008:

1) Main Menu after start of VS 2008: File → New Project... →
Project Types: Visual C# → Visual Studio installed templates:
Empty project Name: introduction1 → Location: C:\temp →
Create directory for solution: switch off → OK.

2) In the window titled: Solution Explorer -Solution 'introduction1' (1 project)
we have to add 4 References and 2 code files:
2.1 Right-click the branch References. A drop-down menu appears. Click Add Reference....
An Add Reference- window appears. Scroll down to the Component Names Presentation Core and
Presentation Framework and select them by Strg+click. Continue scrolling and Strg+click two more
Component Names: System and WindowsBase. Quit the Add Reference- window with the button OK.
2.2 Right-click the branch introduction1. A drop-down menu appears.
Click Add and select New Item.... An Add New Item - introduction1- window appears.
Select the template Code File and give it the Name: introduction1.cs.
Quit the Add New Item - introduction1- window with the button Add.
2.3 Right-click the branch introduction1. A drop-down menu appears. Click
Add and select New Item.... An Add New Item - introduction1- window appears.
Select the template Text File and give it the Name: introduction1.xaml.
Quit the Add New Item - introduction1- window with the button Add.
Check the properties of introduction1.xaml. The Build Action-property should be set to Page.

3) Main menu of Visual Studio 2008 → Project → introduction1 Properties... → Application →
Output type: Change from Console Application to Windows Application.

LogicalAndVisualTree1.xaml

Write the following code into the empty
LogicalAndVisualTree1.xaml:

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
 presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="myWindow"
 Title="Trees" SizeToContent="WidthAndHeight"
 Background="Khaki">
 <StackPanel>
 <Label FontWeight="Bold" FontSize="20" Foreground="Red"
 Content="A useless window"/>
 <Label Content="A useless label" Background="Gray"/>
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Center">
 <Button>Button1</Button>
 <Label Width="20"/><!--empty space-->
 <Button>Button2</Button>
 </StackPanel>
 <StatusBar>This is a Status Bar.</StatusBar>
 </StackPanel>
</Window>

Window

ButtonButton

StatusBarLabelLabel

vertical StackPanel

horizontal StackPanel

String String

String String

String

 3
LogicalAndVisualTree1.cs

Write the following code into the empty LogicalAndVisualTree1.cs:

using System;
using System.Diagnostics;
using System.Windows;
using System.Windows.Media;

public partial class myWindow : Window
{ [STAThread] static void Main() { new Application().Run(new myWindow()); }

 public myWindow()
 { InitializeComponent();
 Debug.WriteLine("Here begins the logical tree.");
 PrintLogicalTree(0, this);
 Debug.WriteLine("Here ends the logical tree.");
 }

 protected override void OnContentRendered(EventArgs e)
 { base.OnContentRendered(e);
 Debug.WriteLine("Here begins the visual tree.");
 PrintVisualTree(0, this);
 Debug.WriteLine("Here ends the visual tree.");
 }

 void PrintLogicalTree(int depth, object obj)
 { // Print the object with preceding spaces that represent its depth
 Debug.WriteLine(new string(' ', depth) + obj);
 // Sometimes leaf nodes aren't DependencyObjects (e.g. strings)
 if (!(obj is DependencyObject)) return;
 // Check if this element contains other elements
 foreach (object child in LogicalTreeHelper.GetChildren(obj as DependencyObject))
 { // process each contained elemet recursivly
 PrintLogicalTree(depth + 1, child);
 }
 }

 void PrintVisualTree(int depth, DependencyObject obj)
 { // Print the object with preceding spaces that represent its depth
 Debug.WriteLine(new string(' ', depth) + obj);
 // Check if this element contains other elements
 for (int i = 0; i < VisualTreeHelper.GetChildrenCount(obj); i++)
 { // process each contained elemet recursivly
 PrintVisualTree(depth + 1, VisualTreeHelper.GetChild(obj, i));
 }
 }
}

Although the logical tree can be traversed within the Window's constructor,
the visual tree is empty until the Window undergoes layout at least once.
That is why PrintVisualTree is called within OnContentRendered,
which doesn't get called until after layout occurs.

 4
The logical and visual tree output

In the main menu of Visual Studio 2008 click View → Output.
The Output window of LogicalAndVisualTree1 appears at the bottom and shows compiling infos
together with the Debug.WriteLine(...) results:

Here begins the logical tree.
myWindow
 System.Windows.Controls.StackPanel
 System.Windows.Controls.Label: A useless window
 A useless window
 System.Windows.Controls.Label: A useless label
 A useless label
 System.Windows.Controls.StackPanel
 System.Windows.Controls.Button: Button1
 Button1
 System.Windows.Controls.Label
 System.Windows.Controls.Button: Button2
 Button2
 System.Windows.Controls.Primitives.StatusBar
Items.Count:1
 This is a Status Bar.
Here ends the logical tree.

Nested objects form a Logical Tree where
property values can be propagated down to
child elements and events can be propagated up
and down. Mostly logical trees are coded in
XAML but they can be written in C# or in any
mixture of XAML and C# too.

Here begins the visual tree.
myWindow
 System.Windows.Controls.Border
 System.Windows.Documents.AdornerDecorator
 System.Windows.Controls.ContentPresenter
 System.Windows.Controls.StackPanel
 System.Windows.Controls.Label: A useless window
 System.Windows.Controls.Border
 System.Windows.Controls.ContentPresenter
 System.Windows.Controls.TextBlock
 System.Windows.Controls.Label: A useless label
 System.Windows.Controls.Border
 System.Windows.Controls.ContentPresenter
 System.Windows.Controls.TextBlock
 System.Windows.Controls.StackPanel
 System.Windows.Controls.Button: Button1
 Microsoft.Windows.Themes.ButtonChrome
 System.Windows.Controls.ContentPresenter
 System.Windows.Controls.TextBlock
 System.Windows.Controls.Label
 System.Windows.Controls.Border
 System.Windows.Controls.ContentPresenter
 System.Windows.Controls.Button: Button2
 Microsoft.Windows.Themes.ButtonChrome
 System.Windows.Controls.ContentPresenter
 System.Windows.Controls.TextBlock
 System.Windows.Controls.Primitives.StatusBar
 Items.Count:1
 System.Windows.Controls.Border
 System.Windows.Controls.ItemsPresenter
 System.Windows.Controls.DockPanel

System.Windows.Controls.Primitives.StatusBarItem: ...
 System.Windows.Controls.Border
 System.Windows.Controls.ContentPresenter
 System.Windows.Controls.TextBlock
 System.Windows.Documents.AdornerLayer
Here ends the visual tree.

The Visual Tree is more complicated than its
corresponding logical tree. It expands the logical tree
to its inner components that derive from
System.Windows.Media.Visual or
System.Windows.Media.Visual3D.
Other elements as simple string content are not
included because they don't have inherent rendering
behavior of their own. It reveals that Button and
Label are comprised of the same elements,
except Button uses an obscure ButtonChrome
element rather than a Border.
These controls have different default property values.
For example, Button has a default Margin of 10 on
all sides whereas Label has a default Margin of 0.

Explanations and Links:
An Adorner overlays visual decorations on a control.
The ContentPresenter renders the surface of the
control.
Every ContentControl has a ControlPresenter
within its ControlTemplate. ButtonChrome creates a
theme-specific look for all Button-elements written
with the .NET Framework.
A Theme is defined by Windows Vista and influences
the collective appearance of all controls and other
visual elements.

Window

ButtonButton

StatusBarLabelLabel

vertical StackPanel

horizontal StackPanel

String String

String String

String

Window

ButtonButton

StatusBarLabelLabel

vertical StackPanel

horizontal StackPanel

Border

Border

AdornerDecorator
ContentPresenter AdornerLayer

Content
Presenter

TextBlock

Border

Content
Presenter

TextBlock

Button
Chrome

Button
Chrome

Border

Content
Presenter

TextBlock Content
Presenter

TextBlockTextBlock

Content
Presenter

TextBlockTextBlock

Border

Items
Presenter

Dock
Panel

StatusBar
Item

Border
Content

Presenter
TextBlock

 5
The Snoop Utility

Snoop is a wonderfull utility (incorporated into Expression Blend) but
available separatly at http://blois.us/Snoop/ to inspect Visual Trees.

It inspects all running WPF applications and furnishes the tree view on the
left for LogicalAndVisualTree1.
There is no need to download Snoop's source code. Just download and
install the Installer Zip-file.

Explanations:

