
 1

Course 3D_MDX: 3D-Graphics with Managed DirectX 9.0
Chapter C5: Comments to the "Read a Mesh from File.x" Project

Copyright © by V. Miszalok, last update: 24-05-2006

Caution: Mozilla Firefox doesn't show the left side tree of MSDN. Recommended browser for MSDN: Internet Explorer

namespaces
using System; //Home of the base class of all classes "System.Object" and of all primitive data types
such as Int32, Int16, double, string.
using System.Windows.Forms;
//Home of the "Form" class (base class of Form1) and its method Application.Run.
using System.Drawing;
//Home of the "Graphics" class and its drawing methods such as DrawStirng,DrawLine,DrawRectangle,FillClosedCurve
using Microsoft.DirectX; //Utilities including exception handling, simple helper methods, structures for matrix,
clipping, and vector manipulation.
using Microsoft.DirectX.Direct3D;
//Graphics application programming interface (API) with models of 3-D objects and hardware acceleration.
For DirectX see: http://msdn.microsoft.com/library/default.asp → Win32 and COM Development → Graphics and
Multimedia → DirectX → SDK Documentation → DirectX SDK Managed → DirectX SDK → Namespaces.

Entry to start our .NET Windows program: public class Form1 : Form
//We derive our window Form1 from the class Form, which is contained in the System.Windows.Forms namespace.

static void Main() { Application.Run(new Form1()); }
//Create an instance of Form1 and ask the operating system to start it as main window of our program.

static Device device = null;
//The global device object must be static since we need it inside the static Timer event handler.

static float xAngle, yAngle, zAngle; //Global movements around the main 3 axes.

static Mesh mesh = null; //declaration of the mesh identifier

String myMeshFile = @"C:\DXSDK\Samples\Media\Tiger\tiger.x";
//The mesh file tiger.x is assumed to be found here.
String myTextureFile = @"C:\DXSDK\Samples\Media\Tiger\tiger.bmp";
//The texture image tiger.bmp is assumed to be found here.
//When You installed the DirectX SDK in the recommended directory C:\DXSDK, You will find tiger.x and tiger.bmp at
this place, otherwise You have to adjust the path.
The character "@" in front of a string prevents the "\" characters inside the string to be interpreted as Escape-characters.
Otherwise You would have to double them all: "C:\\DXSDK\Samples\\Media\\Tiger\\tiger.x".

BaseTexture texture; //BaseTexture is the base class of Texture, which could be used here too.
Bitmap myTexture; //Bitmap object to be filled by (Bitmap)Image.FromFile(myTextureFile).
(See last function void MenuFileRead(object obj, EventArgs ea).)
Timer myTimer = new Timer();
//This Timer sends messages at fixed time intervals to Form1, that trigger Form1 to execute its OnTimer(..) method.
MenuItem miReadMesh; //Menu object used by the constructor public Form1() and by the last function void
MenuFileRead(object obj, EventArgs ea).

 2

Constructor public Form1() inside public class Form1
 miReadMesh = new MenuItem("Read Mesh" , new EventHandler(MenuFileRead));
MenuItem miReadTexture = new MenuItem("Read Texture", new EventHandler(MenuFileRead));
MenuItem miExit = new MenuItem("Exit" , new EventHandler(MenuFileExit));
MenuItem miFile = new MenuItem("File" , new MenuItem[] { miReadMesh,
miReadTexture, miExit });
Menu = new MainMenu(new MenuItem[] { miFile });
//These lines define a drop down menu "File" with three entries: Read Mesh, Read Texture and Exit.

Text = "DirectX3DMesh"; //Title in the blue title bar of Form1.

myTexture = (Bitmap)Image.FromFile(myTextureFile); //Read the first texture image from the hard disk.

myTimer.Tick += new EventHandler(OnTimer); //Obligatory definition of an event handler for the Timer event.
myTimer.Interval = 1; //1 millisecond intervals means: as fast as possible. The operating system will raise as many
events as possible (normally 1000[msec] divided by monitor refresh[≈80Hz] ≈ 13 msec).

ClientSize = new Size(1024, 800); //Calls OnResize(...)
//This statement raises an OnResize(...) event which leads to the first time initialization of a DirectX-Device.

Overridden event handler protected override void OnResize(System.EventArgs e) inside public class
Form1
//Whenever the window changes we have to initialize Direct3D from scratch.

myTimer.Stop(); //Stop the timer during initialization. It may disturb DirectX-initialization.

try //All the following things crash when DirectX is not properly installed. In this case the try-catch clause offers a
civilized exit.

//Get information from the operating system about its current graphics properties.
PresentParameters presentParams = new PresentParameters();
//This structure is an obligatory parameter for creating a new Device. It carries several flags such as Windowed = true;
and SwapEffect.Discard; = status flags controlling the behavior of the Device.
//we have to set four flags
presentParams.Windowed = true; //We want a program in a window not a full screen program.
presentParams.SwapEffect = SwapEffect.Discard; //This flag tells the graphic board how to handle the
backbuffer(s) after front-back flipping. Many graphic boards need this flag, but I do not really know why. See:
http://msdn.microsoft.com/library/.../D3DSWAPEFFECT.asp
presentParams.EnableAutoDepthStencil = true; //with depth buffer
//We want a Z-buffer on the graphics board.
presentParams.AutoDepthStencilFormat = DepthFormat.D16; //16 bit depth //Z-buffer just needs limited
resolution (short integers). Other possible formats see: http://msdn.microsoft.com/archive

//Create a new D3D-device that serves as canvas.
if (device != null) device.Dispose(); //Free the old canvas if any.
device = new Device(0,DeviceType.Hardware,this,CreateFlags.SoftwareVertexProcessing,presentParams);
//1. parameter = 0 = default device. (The computer can have different devices f.i. two graphic boards.)
//2. parameter = DeviceType.Hardware allows rasterization by the graphic board (HAL=first choice), software (HEL) or
mixed.
//3. parameter = this Pointer to our Form1-Control being the target of any graphical output.
//4. parameter = CreateFlags.SoftwareVertexProcessing is a flag that switches off the vector graphics part of the
graphic board to avoid any risk from old graphic boards and/or old DirectX-drivers = all vector graphics via HEL.
Disadvantage: Waste of the powerful HAL vector pipelines of a modern graphic board.
//5. parameter = presentParams is a structure of status flags describing the behavior of a graphic board.
//See: ../../Lectures/L05_OpenGL_DirectX
if (mesh != null) mesh.Dispose(); //free the old mesh if any
mesh = Mesh.FromFile(myMeshFile, MeshFlags.SystemMemory, device); //Read an .x-file from the hard disk.
//1. parameter = String that specifies the file name.
//2. parameter = One or more flags from the MeshFlags enumeration that specify creation options for the mesh.
See: msdn.microsoft.com.
//3. parameter = The current Device object.

if (texture != null) texture.Dispose(); //free the old texture if any
texture = new Texture(device, myTexture, 0, Pool.Managed);
//1. parameter = The current Device object.
//2. parameter = myTexture = (Bitmap)Image.FromFile(myTextureFile); //Inside constructor Form1().
//3. parameter = Usage enumeration that specify creation options for the mesh. See: msdn.microsoft.com.
//4. parameter = Pool Memory class that holds buffers for a resource. See: msdn.microsoft.com.
device.SetTexture(0, texture); //See: msdn.microsoft.com.

 3

Material myMaterial = new Material();
myMaterial.Diffuse = myMaterial.Ambient = Color.White;
//Since all material properties are white, the meshes will reflect any sort of light.
device.Material = myMaterial; //Copy the material properties to the device.

//turn on some white ambient light that scatters the object evenly
device.RenderState.Ambient = Color.White;

//set up the transformation of world coordinates into camera or view space
device.Transform.View = Matrix.LookAtLH(
 new Vector3(0f, 0f,-5f), // eye point 5.0 in front of the canvas
 new Vector3(0f, 0f, 0f), // camera looks at point 0,0,0
 new Vector3(0f, 1f, 0f)); // worlds up direction is the y-axis. //See:
http://msdn.microsoft.com

//set up the projection transformation using 4 parameters:
//1.: field of view = 45 degrees; 2.: aspect ratio = height / width = 1 = square window;
//3.: near clipping distance = 0; 4.: far clipping distance = 10;
device.Transform.Projection = Matrix.PerspectiveFovLH((float)Math.PI/4, 1f, 1f, 100f);.
//Describe the truncated viewing pyramid = frustum:
1. is the viewing angle in radians (PI/4=45o),
2. is the ratio height / width,
3. is the z-value of the front plane of the viewing volume and
4. the z-value of its back plane.
//See: http://msdn.microsoft.com/archive
//See: www.lighthouse3d.com/opengl/viewfrustum/ Please mail me if this link is dead.
Experiment 1: Enlarge Math.PI/4 to Math.PI/2 = 90o. The scene will appear shifted away.
Experiment 2: Distort the ratio to a) 0.5 and b) to 2.0.
Experiment 3: Shift the front plane away from You towards the cylinder in steps of 0.5.

device.RenderState.CullMode = Cull.None; //Culling is a method to accelerate rendering by excluding (mostly
back-) surfaces from the render process.

device.RenderState.Lighting = true; //Switch on the ambient light.

xAngle = yAngle = zAngle = 0f; //start angles //You can start with any arbitrary angle.

myTimer.Start(); //start the timer again //It has been stopped by the first statement of this function

catch (DirectXException) { MessageBox.Show("Could not initialize Direct3D."); return; }
//Emergency exit when DirectX 9.0 was not found and/or new Device crashed. End of the try-clause = 2nd statement of
this function.

Event handler protected static void OnTimer(Object myObject, EventArgs myEventArgs) inside
public class Form1

if (device == null) return; //Emergency exit if the DirectX initialization has gone wrong.

//throw the old image away
device.Clear(ClearFlags.Target | ClearFlags.ZBuffer, Color.Gray, 1f, 0);
//Erase any former content from the canvas and the Z-buffer.
Recommended experiment: Kick out this Clear-statement and observe what happens.

//rotate with 3 angular velocities
//The meshes rotate around three main axes with the same velocity of 0.02/step ≈ 3.6o/step.
Matrix m = Matrix.RotationYawPitchRoll(yAngle += 0.02f, xAngle += 0.02f, zAngle += 0.02f);

device.BeginScene(); //Open the render clause
mesh.DrawSubset(0); //Render the mesh. If the Mesh has more than one subset, You will just see the first.
device.EndScene(); //Close the render clause
device.Present(); //show the canvas // = Command to flip the front and the back buffer of the graphic board.

 4

Event handler void MenuFileRead(object obj, EventArgs ea) inside public class Form1

OpenFileDialog dlg = new OpenFileDialog(); //A file select dialog box appers in front of Form1

dlg.InitialDirectory = @"C:\DXSDK\Samples\Media";"; //default directory to start with.

if ((MenuItem)obj == miReadMesh) dlg.Filter = "meshes (*.x)|*.x| All files (*.*)|*.*";
//If the function has been started by the "ReadMesh" menu item, the dialog box looks for *.x-files.

else dlg.Filter = "Bitmaps (*.bmp)|*.bmp| All files (*.*)|*.*";
//If the function has been started by the "ReadTexture" menu item, the dialog box looks for *.bmp-files.

if (dlg.ShowDialog() != DialogResult.OK) return; //Forget everything if no file has been selected.

if ((MenuItem)obj == miReadMesh) myMeshFile = dlg.FileName;
//Remember the name of the new mesh file.

else myTexture = (Bitmap)Image.FromFile(dlg.FileName); //Read a new texture image.

OnResize(null);//Initialize everything

Event handler void MenuFileExit(object obj, EventArgs ea) inside public class Form1

Application.Exit(); //Exit of Form1

