
 1

Course 2D_WPF: 2D-Computer Graphics with C# + WPF
Chapter C1: Comments to the Intro Project

Copyright © by V. Miszalok, last update: 06-02-2008

German: Alle Links zeigen auf englische Hilfetexte. Viele dieser Texte gibt es aber auch auf Deutsch. Sie
müssen nur in allen URLs folgende 5 Buchstaben verändern: en-us → de-de wie in folgendem Beispiel:
english: http://msdn2.microsoft.com/en-us/library/system.windows.shapes.aspx
deutsch: http://msdn2.microsoft.com/de-de/library/system.windows.shapes.aspx

using namespaces
//The .NET Framework 3.5 Class Library FCL contains thousands of classes.
For better orientation it is subdivided into "namespaces" each containing a subset of related classes.
Any class and its members have to be called by writing the full tree of its namespace which forces the
programmer to write spaghetti-long identifiers. With the "using" directive You can shorten such long identifiers
and the compiler will complete the missing namespaces.

using System; //Home of the base class of all classes "System.Object" and
of all primitive data types such as Int32, Int16, double, string. Link: System.

using System.Windows; //Home of the "Window" class (base class of our main window window1) and
its method Application().Run. Link: System.Windows.

using System.Windows.Controls; //Home of the base class of GUI-Elements
such as Button, Canvas, TextBox etc. Link: System.Windows.Controls.

using System.Windows.Shapes; //Home of the "Shape" class = base class of
Line, Polyline, Rectangle etc. Link: System.Windows.Shapes.

using System.Windows.Threading; //Home of the "DispatcherTimer" class.
Link: System.Windows.Threading.

Entry to start our WPF program: public class window1 : Window
//We derive our window1 from the class Window, which the compiler automatically finds in the
System.Windows namespace.

[STAThread] static void Main() { new Application().Run(new window1()); }
//Create a single thread instance of window1 and
ask the operating system to start it as main window of our program. Link: Application Class.

Canvas myCanvas = new Canvas(); //Create a Canvas object to draw TextBoxes, Lines on
its surface and which covers the client space of window1. Link: Canvas.

Line line1 = new Line();
Line line2 = new Line(); //Create two Line objects to be drawn on the Canvas. Link: Line.

Rectangle rect = new Rectangle();
Ellipse elli = new Ellipse();
//Create a Rectangle and an Ellipse object to be drawn on the Canvas. Link: Rectangle.

DockPanel myPanel = new DockPanel();
//Create a surface where child elements can be docked on either side. Link: DockPanel.

TextBox left = new TextBox();
TextBox top = new TextBox();
TextBox right = new TextBox();
TextBox bottom = new TextBox();
TextBox central = new TextBox(); //Create five TextBox objects. Link: TextBox.

 2
double zoom = 1.1; //Sets the initial zoom to 10% per step.
double angle = 0 ; //Rotation of the Brush origin

Random r = new Random(); //Create a Random-value generator object. Link: Random.

Byte r1, g1, b1, r2, g2, b2; //Create six bytes intended to compose 2 RGB-colors.

Constructor public window1() inside public class window1
this.Top = this.Left = 50;
this.Width = this.Height = 500;
this.Title = "intro1"; //Define the position of the upper left corner, the initial width and height and
the title text of window1. Link: Window.

myCanvas.Children.Add(line1);
myCanvas.Children.Add(line2);
myCanvas.Children.Add(rect);
myCanvas.Children.Add(elli);
myCanvas.Children.Add(myPanel); //myCanvas adopts five children.
Children is a property inherited from Panel. Link: Panel.Children Property.

myPanel.Children.Add(top); DockPanel.SetDock(top , Dock.Top); top .Text = "top";
myPanel.Children.Add(bottom); DockPanel.SetDock(bottom, Dock.Bottom); bottom.Text = "bottom";
myPanel.Children.Add(left); DockPanel.SetDock(left , Dock.Left); left .Text = "left";
myPanel.Children.Add(right); DockPanel.SetDock(right , Dock.Right); right .Text = "right";
myPanel.Children.Add(central);
//myPanel adopts five children. Four of them are docked to the 4 borders of myPanel and
obtain their text strings. The fifth centers itself automatically in the middle of the remaining space.
Link: DockPanel.SetDock Method.

Background = new LinearGradientBrush(Colors.Red, Colors.Blue, 90);
//The background color of window1 is changing from red to blue from top to bottom = 90 degrees.
Link: LinearGradientBrush Class.

Foreground = new SolidColorBrush(Color.FromRgb(0, 0, 200));
//The foreground color of window1 is blue. Link: SolidColorBrush Class.

FontFamily = new FontFamily("Courier New");
FontSize = 12; //Let us use a simple font. Link: Control.FontFamily Property.

foreach(TextBox text in myPanel.Children)
{ text.HorizontalAlignment = HorizontalAlignment.Center;
 text.VerticalAlignment = VerticalAlignment.Center;
} //Align all stings in the centers of their TextBoxes.
Link: FrameworkElement.HorizontalAlignment Property.

foreach(Object obj in myCanvas.Children)
{ if (obj.GetType() == typeof(DockPanel)) continue; //Forget about child myPanel.
 ((Shape)obj).Stroke = Brushes.Black;
 ((Shape)obj).StrokeThickness = 5;
}
//The shape-children of myCanvas are: two lines, the rectangle and the ellipse.
They should be outlined with thick black contours. Link: Shape.Stroke Property.

rect.Fill = Brushes.White;
//Inside the black border the rectangle should be filled with white. Link: Shape.Fill Property.

r1 = (Byte)r.Next(255); g1 = (Byte)r.Next(255); b1 = (Byte)r.Next(255);
r2 = (Byte)r.Next(255); g2 = (Byte)r.Next(255); b2 = (Byte)r.Next(255);
//Initialize the bytes with random values. Link: Random.Next Method.

DispatcherTimer myTimer = new DispatcherTimer();
myTimer.Interval = TimeSpan.FromMilliseconds(40);
myTimer.Tick += TimerOnTick;
myTimer.Start(); //Setup a timer event generator that sends as many timer messages as reasonable.
Link: DispatcherTimer Class.

 3
Timer event handler void TimerOnTick(Object sender, EventArgs args)
inside public class window1
TimerOnTick(...) is responsible for permanently zooming the window up and down.

if (myCanvas.ActualWidth < 200) zoom = 1.1;
//After reaching its smallest width of 200 the window will rapidly zoom up in steps of 10%.

if (myCanvas.ActualWidth > 800) zoom = 0.99;
//After reaching its biggest width of 800 the window will slowly zoom down in steps of 1%.

this.Width *= zoom;
this.Height *= zoom;
this.FontSize *= zoom; //Width, Height and FontSize should behave the same way.

Resize-Event handler
protected override void OnRenderSizeChanged(SizeChangedInfo sizeInfo)
inside public class window1
This event handler updates the strings in the central-TextBox and adjusts the endpoints of the diagonals and
the Left, Top, Width, Height-properties of rect and elli.
It fills elli using an animated RadialGradientBrush with animated colors.

String s1 = "Hello World " + DateTime.Now.ToString() + "\n";
//Concatenate two strings and a new-line-escape-character.

int width = Convert.ToInt32(this.Width);
int height = Convert.ToInt32(this.Height);
//Get the current window size and round it to integer values.

String s2 = "Window Size = " + width.ToString() + " x " + height.ToString() + "\n";
//Concatenate four strings and a new-line-escape-character.

width = Convert.ToInt32(myCanvas.ActualWidth);
height = Convert.ToInt32(myCanvas.ActualHeight);
//Get the size of the current client area = canvas size and round it to integer values.

String s3 = "Client Size = " + width.ToString() + " x " + height.ToString() + "\n";
//Concatenate four strings and a new-line-escape-character.

String s4 = String.Format("Font Size = {0,2:F1}", this.FontSize);
//Construct a string from a float variable this.FontSize with 2 digits in front and one digit
behind the decimal point. Link: String.Format Method.

central.Text = s1 + s2 + s3 + s4; //Write four lines into the central-TextBox.

line1.X1 = 0; line1.Y1 = 0; line1.X2 = myCanvas.ActualWidth; line1.Y2 = myCanvas.ActualHeight;
line2.X1 = myCanvas.ActualWidth; line2.Y1 = 0; line2.X2 = 0; line2.Y2 = myCanvas.ActualHeight;
//Set line1-start to the upper left, line1.end to the lower right,
 line2.start to the upper right and line2.end to the lower left corner of myCanvas.

Canvas.SetLeft(rect, myCanvas.ActualWidth /5);
Canvas.SetLeft(elli, myCanvas.ActualWidth /5);
Canvas.SetTop (rect, myCanvas.ActualHeight/5);
Canvas.SetTop (elli, myCanvas.ActualHeight/5);
rect .Width = elli.Width = 3 * myCanvas.ActualWidth / 5;
rect .Height = elli.Height = 3 * myCanvas.ActualHeight / 5;
//Set the upper left corners of both rect and elli to 20% left and 20% down.
//Set Width and Height of both rect and elli to 60%.

Color color1 = Color.FromRgb(r1++, g1++, b1++);
Color color2 = Color.FromRgb(r2++, g2++, b2++);
//Increment all red, green and blue values and create new colors. Values beyond 255 restart at 0.

 4

RadialGradientBrush brush = new RadialGradientBrush(color1, color2);
brush.SpreadMethod = GradientSpreadMethod.Repeat;
brush.RadiusX = brush.RadiusY = 0.1;
brush.GradientOrigin = new Point(0.5+0.05*Math.Cos(angle), 0.5+0.05*Math.Sin(angle));
elli.Fill = brush;
angle += Math.PI / 32;
//Create a new radial brush with 5 rings with a slightly rotating origin and apply it to elli.
The origin rotates with a velocity of 180/32 = 5.625 degrees/step. Link: RadialGradientBrush Class.

myPanel.Width = myCanvas.ActualWidth;
myPanel.Height = myCanvas.ActualHeight;
//Adjust the size of the DockPanel myPanel to the current size of the canvas.

Content = myCanvas; //Show everything. Link: WPF Content Model.

